

 SQLShack

 Skip to content

 	SQL Server training
	Español

	
		

			
				

	
		
						
					
				
					
				

		

		
		

			

						
			Import data from PDF files using R Scripts SQL Server

						December 8, 2020			 by Rajendra Gupta
			
			

		

		
		

									

 In this article, we will read and import data from a PDF file using the R scripts SQL Server.

Introduction

 In today’s digital world, data is available in many formats such as Excel, CSV, PDF, HTML, JSON, XML, TXT. We use
 SQL Server Integration Services for data imports and exports in SQL Server. It can read data from various data
 sources, databases, transform them in the required format.

 You cannot import or export data in PDF format from the SSIS package directly. The PDF is a popular format for all
 useful documents such as agreements, contracts, policy documents, research. Generally, we use Microsoft word for
 preparing the documents and later converts into PDF formats.

 In the article, Importing data from a PDF file in Power BI Desktop, we explored the Power BI Desktop feature for the data import from
 a PDF file.

 SQL Server Machine Learning Language provides various functionality in the SQL Server. You can directly run your
 external R script from the SQL Server console. In this 4th article on SQL Server R script, we will use
 the R functionality to read and import data from a portal file format (PDF) file.

Environment details

 You need the SQL Server environment as specified below for this article.

	Version: SQL Server 2019

	Installed Feature: R Machine learning Language

	SQL Server Launchpad and Database engine service should be in running state

	SQL Server Management Studio

Read data from PDF files using R Scripts SQL Server

 We can use the external libraries to use the required functions in the R Scripts SQL Server. For this article, we
 use pdftools external library.

 Launch the administrative R console from the C:\Program Files\Microsoft SQL Server\MSSQL15.INST1\R_SERVICES\bin and install the PDFTools library using the below SQL Server R
 Script.

 install.packages(“pdftools”)

 It downloads the PDFTools and installs for your R scripts SQL Server.

 Once installed, you can use sp_execute_external_script stored procedure and print the
 pdftools package version.

		
		
			

			
					
					1
2
3
4
5
6

					EXECUTE sp_execute_external_script
@language = N'R',
@script = N'
library(rio)
print (packageVersion("pdftools"))
'

			

		

 You get the package version, it shows that you can use PDFTools for your scripts.

 For this article, I download the sample PDF file from the URL. The
 File content is as below.

 Import the library in your R script session. If we want to check the PDF files available in our current R directory,
 you can use the list.files() function in R Scripts SQL Server and filter the results for PDF files.

 > library(pdftools)

 > files <- list.files(pattern = “pdf$”)

 As shown below, It returns the PDF file name. In my case, the file name is MyData.pdf

 Now, to read the PDF file content, we use the function pdf.text() in the SQL Server R script.

 data <- pdf_text(“MyData.pdf”)

 data

 In the output, you get file contents. You can compare the output with your original PDF document to verify the
 contents.

 If you compare this with the original PDF document, you can easily see that all of the information is available even if it is not ready to be analyzed. What do you think is the next step needed to make our data more useful?

 In the above image, the R Scripts SQL Server displays PDF text without any formatting. It does not consider any
 space or line break between the sentences. We might want to display all characters in a single line. We can use the
 strsplit() function, and it breaks down the extracted text in multiple lines using the new line
 character(\n).

 > data<- pdf_text(“MyData.pdf”)

 > Splitdata<-strsplit(data,”\n”)

 > Splitdata

 Look at the following screenshot. Here, we get the extracted characters in separate lines similar to the original
 PDF document.

 Let’s convert the script into the SQL Server R script format using the sp_execute_external_scripts
 stored procedure.

 In the below script, we use the following arguments:

	@language: Specify the machine learning language R
	@Script: In the script section, we specify the R script that we want to execute from SQL Server

		
			

			
					
					1
2
3
4
5
6
7

					EXECUTE sp_execute_external_script
@language = N'R',
@script = N'
library(pdftools)
data<- pdf_text("C://Temp//MyData.pdf")
OutputDataSet = data.frame(data)
'

			

		

 In the Grid format, the PDF text appears in a single block.

 In the above screenshot, we do not get any column heading. To display the heading, we can specify it using the WITH
 RESULT SET in R Scripts SQL Server and define the column header name with its data type.

		
		
			

			
					
					1
2
3
4
5
6
7
8

					EXECUTE sp_execute_external_script
@language = N'R',
@script = N'
library(pdftools)
data<- pdf_text("C://Temp//MyData.pdf")
OutputDataSet = data.frame(data)
'
with result sets (("Extracted Text from PDF" varchar(max)))

			

		

 If you display result in the text (Result to text – CTRL+T) in SSMS, it gives you formatted data because it reads
 whole data in a text format (1 row affected).

 Similarly, you can modify the R Scripts SQL Server with the strsplit() function and split the
 extracted text into multiple lines.

		
		
			

			
					
					1
2
3
4
5
6
7
8
9

					EXECUTE sp_execute_external_script
@language = N'R',
@script = N'
library(pdftools)
data<- pdf_text("C://Temp//MyData.pdf")
Splitdata<-strsplit(data,"\n")
OutputDataSet = data.frame(Splitdata)
'
with result sets (("Extracted Text from PDF" varchar(max)))

			

		

 Now, we have 17 lines in the SSMS grid result as per our original document.

Read data from a PDF file and Insert data into SQL Server table

 Till now, we have read data directly from the PDF file using the SQL Server R script. Most of the time, we want to
 import into SQL tables as well.

 For this purpose, create a SQL table and define the data type as Varchar(). You should use the appropriate data
 length in the varchar(). For the demonstration purpose, I specified it as varchar(1000).

		
		
			

			
					
					1
2
3
4
5

					Create table DemoDB.dbo.ExtractedPDFData
(
 id int identity,
 ExtractedText varchar(1000)
)

			

		

		
		
			

			
					
					1
2
3
4
5
6
7
8
9

					Insert into DemoDB.dbo.ExtractedPDFData
EXECUTE sp_execute_external_script
@language = N'R',
@script = N'
library(pdftools)
data<- pdf_text("C://Temp//MyData.pdf")
Splitdata<-strsplit(data,"\n")
OutputDataSet = data.frame(Splitdata)
'

			

		

 Once you run the below T-SQL with the SQL Server R Script, it does not display the extracted text into the SSMS
 output. It inserts data into newly created [ExtractedPDFData].

 You can query the SQL table, and it shows you the extracted data from the pDF file using SQL Server R Script.

Text mining using Machine learning language R Scripts SQL Server for the PDF data

 We can do text mining using the imported data from a PDF file using the SQL Server R script. Text mining means doing
 data analysis on input data.

 You need to install the tm external package for this demonstration.

 install.packages(“tm”)

 library(“tm”)

 Here, we do not cover text mining in detail, but this article gives you an overview of implementing it for your
 dataset. The Corpus is a collection of text documents so that we can apply text mining.

 data <- pdf_text(“MyData.pdf”)

 extracteddata <- Corpus(VectorSource(text))

 Now, on the extracted data, we apply the following transformations:

	
 We convert the texts into lower case. It makes the words look similar. For example, the PDF and pdf will be the same words for analysis purposes

 extracteddata <- tm_map(extracteddata , content_transformer(tolower))

	
 The below command removes the common words for the English language from the extracted PDF data

 extracteddata <- tm_map(extracteddata , removeWords, stopwords(“english”))

	
 Remove any punctuation marks from the extracted text

 extracteddata <- tm_map(extracteddata , removePunctuation)

	
 Remove the numbers from the extracted text

 extracteddata <- tm_map(extracteddata, removeNumbers)

 Now, we want to prepare the term-document matrix for the top 3 used words. It displays the words and their frequency
 in the extracted data.

 In the below script, we use the TermDocumentMatrix to construct a term-document matrix. We further sort the data and sort
 them in descending order of their frequency. Further, it displays the top 2 records using the head() function.

 extracteddata_matrix <- TermDocumentMatrix(extracteddata)

 m <- as.matrix(extracteddata_matrix)

 v <- sort(rowSums(m),decreasing=TRUE)

 d <- data.frame(word = names(v),freq=v)

 head(d, 3)

 Let’s convert it to SQL Server R script and then execute the t-SQL. In the below R script, we embed the code into
 the @script argument.

		
		
			

			
					
					1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

					EXECUTE sp_execute_external_script
@language = N'R',
@script = N'
library(pdftools)
library("tm")
data<- pdf_text("C://Temp//MyData.pdf")
extracteddata <- Corpus(VectorSource(data))
extracteddata <- tm_map(extracteddata , content_transformer(tolower))
extracteddata <- tm_map(extracteddata , removeWords, stopwords("english"))
extracteddata <- tm_map(extracteddata , removePunctuation)
extracteddata <- tm_map(extracteddata, removeNumbers)
extracteddata_matrix <- TermDocumentMatrix(extracteddata)
m <- as.matrix(extracteddata_matrix)
v <- sort(rowSums(m),decreasing=TRUE)
d <- data.frame(word = names(v),freq=v)
print(head(d,2))
'

			

		

 As per the below script output, we have the following word frequency.

	
 PDF – 7 times

	
 Files – 6 times

 To verify the same, open the PDF file and search for the keywords PDF and Files. As shown below, it matches the
 frequency of the words received in the SQL Server R script output.

Conclusion

 In this article, we explored reading data from a PDF document using the SQL Server R script. Further, we saw an
 example of text mining on the extracted data. You can further explore more useful functions for text mining using
 the R service documentation.

 	Author
	Recent Posts

Rajendra Gupta

Hi! I am Rajendra Gupta, Database Specialist and Architect, helping organizations implement Microsoft SQL Server, Azure, Couchbase, AWS solutions fast and efficiently, fix related issues, and Performance Tuning with over 14 years of experience.

I am the author of the book "DP-300 Administering Relational Database on Microsoft Azure". I published more than 650 technical articles on MSSQLTips, SQLShack, Quest, CodingSight, and SeveralNines.

I am the creator of one of the biggest free online collections of articles on a single topic, with his 50-part series on SQL Server Always On Availability Groups.

Based on my contribution to the SQL Server community, I have been recognized as the prestigious Best Author of the Year continuously in 2019, 2020, and 2021 (2nd Rank) at SQLShack and the MSSQLTIPS champions award in 2020.

Personal Blog: https://www.dbblogger.com
I am always interested in new challenges so if you need consulting help, reach me at rajendra.gupta16@gmail.com

View all posts by Rajendra Gupta

Latest posts by Rajendra Gupta (see all)
						How to install PostgreSQL on Ubuntu - July 13, 2023				
						How to use the CROSSTAB function in PostgreSQL - February 17, 2023				
						Learn the PostgreSQL COALESCE command - January 19, 2023				

Related posts:
	Importing data from a PDF file in Power BI Desktop
	Top SQL Server Books
	SQL Convert Date functions and formats
	Funciones y formatos de SQL Convert Date
	How to import/export data to SQL Server using the SQL Server Import and Export Wizard

			
		

		

		

			Machine learning, R
			
			
				

					

						

					

					

						About Rajendra Gupta

						Hi! I am Rajendra Gupta, Database Specialist and Architect, helping organizations implement Microsoft SQL Server, Azure, Couchbase, AWS solutions fast and efficiently, fix related issues, and Performance Tuning with over 14 years of experience.

I am the author of the book "DP-300 Administering Relational Database on Microsoft Azure". I published more than 650 technical articles on MSSQLTips, SQLShack, Quest, CodingSight, and SeveralNines.

I am the creator of one of the biggest free online collections of articles on a single topic, with his 50-part series on SQL Server Always On Availability Groups.

Based on my contribution to the SQL Server community, I have been recognized as the prestigious Best Author of the Year continuously in 2019, 2020, and 2021 (2nd Rank) at SQLShack and the MSSQLTIPS champions award in 2020.

Personal Blog: https://www.dbblogger.com
I am always interested in new challenges so if you need consulting help, reach me at rajendra.gupta16@gmail.com

View all posts by Rajendra Gupta

						

							

								View all posts by Rajendra Gupta →
							

						

					

				

			
		
		
		

	
				168 Views

				

			
		

	

			
			Follow us!

			

		

Popular
	 SQL Convert Date functions and formats
	 SQL Variables: Basics and usage
	 Different ways to SQL delete duplicate rows from a SQL Table
	 SQL PARTITION BY Clause overview
	 How to UPDATE from a SELECT statement in SQL Server
	 Overview of SQL RANK functions
	 SQL WHILE loop with simple examples
	 How to backup and restore MySQL databases using the mysqldump command
	 SQL Server table hints – WITH (NOLOCK) best practices
	 SELECT INTO TEMP TABLE statement in SQL Server
	 Understanding the SQL MERGE statement
	 SQL multiple joins for beginners with examples
	 SQL Server functions for converting a String to a Date
	 The Table Variable in SQL Server
	 SQL Lag function overview and examples
	 Understanding the SQL Decimal data type
	 SQL percentage calculation examples in SQL Server
	 CASE statement in SQL
	 DELETE CASCADE and UPDATE CASCADE in SQL Server foreign key
	 SQL CROSS JOIN with examples

Trending

	SQL Server Transaction Log Backup, Truncate and Shrink Operations
	Six different methods to copy tables between databases in SQL Server
	How to implement error handling in SQL Server
	Working with the SQL Server command line (sqlcmd)
	Methods to avoid the SQL divide by zero error
	Query optimization techniques in SQL Server: tips and tricks
	How to create and configure a linked server in SQL Server Management Studio
	SQL replace: How to replace ASCII special characters in SQL Server
	How to identify slow running queries in SQL Server
	SQL varchar data type deep dive
	How to implement array-like functionality in SQL Server
	All about locking in SQL Server
	SQL Server stored procedures for beginners
	Database table partitioning in SQL Server
	How to drop temp tables in SQL Server
	How to determine free space and file size for SQL Server databases
	Using PowerShell to split a string into an array
	KILL SPID command in SQL Server
	How to install SQL Server Express edition
	SQL Union overview, usage and examples

Solutions

	Read a SQL Server transaction log
	SQL Server database auditing techniques
	How to recover SQL Server data from accidental UPDATE and DELETE operations
	How to quickly search for SQL database data and objects
	Synchronize SQL Server databases in different remote sources
	Recover SQL data from a dropped table without backups
	How to restore specific table(s) from a SQL Server database backup
	Recover deleted SQL data from transaction logs
	How to recover SQL Server data from accidental updates without backups
	Automatically compare and synchronize SQL Server data
	Open LDF file and view LDF file content
	Quickly convert SQL code to language-specific client code
	How to recover a single table from a SQL Server database backup
	Recover data lost due to a TRUNCATE operation without backups
	How to recover SQL Server data from accidental DELETE, TRUNCATE and DROP operations
	Reverting your SQL Server database back to a specific point in time
	How to create SSIS package documentation
	Migrate a SQL Server database to a newer version of SQL Server
	How to restore a SQL Server database backup to an older version of SQL Server

Helpers and best practices
	BI performance counters
	SQL code smells rules
	SQL Server wait types

		

	

	

	

		

		

			
			

		

	

	
		© Quest Software Inc. ALL RIGHTS RESERVED. | GDPR | Terms of Use | Privacy

	

